Warping functions of some warped products

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower bounds for warping functions on warped-product AHE manifolds

Let [γ] be the conformal boundary of a warped product C3,α AHE metric g = gM +u 2h on N = M×F , where (F, h) is compact with unit volume and nonpositive curvature. We show that if [γ] has positive Yamabe constant, then u has a positive lower bound that depends only on [γ].

متن کامل

Warped Products Admitting a Curvature Bound

Warped products provide perhaps the major source of examples and counterexamples in metric and Riemannian geometry. Sufficient conditions for a warped product B×f F to have a curvature bound in the sense of Alexandrov, either above or below, are found in [AB 04]. Given the importance of warped products, we want to know if all the known sufficient conditions are needed. Here we prove their neces...

متن کامل

Some Positive Differences of Products of Schur Functions

The product sμsν of two Schur functions is one of the most famous examples of a Schur-positive function, i.e. a symmetric function which, when written as a linear combination of Schur functions, has all positive coefficients. We ask when expressions of the form sλsρ − sμsν are Schur-positive. This general question seems to be a difficult one, but a conjecture of Fomin, Fulton, Li and Poon says ...

متن کامل

Warped Products and Conformal Boundaries of Cat(0)-spaces

We discuss the conformal boundary of a warped product of two length spaces and provide a method to calculate this in terms of the individual conformal boundaries. This technique is then applied to produce CAT(0)-spaces with complicated conformal boundaries. Finally we prove that the conformal boundary of an Hadamard n-manifold is always simply connected for n ≥ 3, thus providing a bound for the...

متن کامل

A Ddvv Inequality for Submanifolds of Warped Products

We prove a DDVV inequality for submanifolds of warped products of the form I ×a Mn(c) where I is an interval and Mn(c) a real space form of curvature c . As an application, we give a rigidity result for submanifolds of R×eλt Hn(c). RÉSUMÉ. Une inégalité de type DDVV pour les sous-variétés des produits tordus. Nous donnons une inégalité de type DDVV pour les sous-variétés des produits tordus de ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2014

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2013.11.040